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Stokes flow is fluid flow where advective inertial forces 
are negligibly small compared with viscous forces. This 
is a typical situation on a microscale or when the fluid 

velocity is very small. Stokes flow is a good and important 
approximation for a number of physical problems such as 
sedimentation, modeling of biosuspensions, construction 
of efficient fibrous filters, and developing energy efficient 
microfluidic devices (e.g., mixers). Efficient numerical 
solution of Stokes flow requires unstructured meshes adapted 
to geometry and solution as well as accurate discretization 
methods capable of treating such meshes. We developed a 
new mimetic finite difference (MFD) method that remains 
accurate on general polygonal meshes, and that may include 
nonconvex and degenerate elements [1].

Triangular meshes allow one to model complex geometric 
objects. However, compared with quadrilateral and more 
general polygonal meshes, the triangular meshes with 
the same resolution do not provide optimal cover of the 
space, which result in larger algebraic problems. The MFD 
method was designed to provide accurate approximation of 
differential operators on general meshes. These meshes may 
include degenerate elements, as in adaptive mesh refinement 
methods, nonconvex elements, as in moving mesh methods, 
and even elements with curved edges near curvilinear 
boundaries.

   The incompressible Stokes equations are
                  
         

where u is the fluid velocity, p is the pressure, F is the given 
external force, and μ is the fourth-order symmetric positive 
definite tensor viscosity. Since μ is a tensor, the developed 

MFD method can be applied to problems of linear elasticity 
that can be written in a similar form.

The MFD method has many similarities with a low-order 
finite element (FE) method. Both methods try to preserve 
fundamental properties of physical and mathematical 
models. Various approaches to extend the FE method to 
nonsimplicial elements have been developed over the last 
decade. Construction of basis functions for such elements 
is a challenging task and may require extensive analysis of 
geometry. Contrary to the FE method, the MFD method uses 
only boundary representation of discrete unknowns to build 
stiffness and mass matrices. Since no extension inside the 
mesh element is required, practical implementation of the 
MFD method is simple for general polygonal meshes.

The MFD method is flexible in selecting discrete unknowns. 
In [1], the velocity is approximated at mesh vertices, and the 
velocity flux is approximated at mesh edges. The pressure 
is approximated by one constant (e.g., average) on each 
mesh element. This set of discrete velocity unknowns is 
abundant and will be reduced in the future. On triangular 
meshes, the MFD method coincides with the FE method 
that uses the same set of discrete unknowns. The numerical 
experiments in [1] have shown the second-order convergence 
for the velocity variable and the first-order for the pressure on 
unstructured polygonal meshes. The convergence rates have 
remained the same in experiments with anisotropic tensor μ.

Like the MFD method for the diffusion problem [2,3], the 
novel MFD method [1] is a parametric family of methods 
with equivalent properties. In numerical experiments, we 
have used a particular member of this family. Analysis 
of this family is an open question. The answer to this 
question may result in new adaptive methods. In addition to 
traditional mesh refinement (h-adaptation) and enrichment 
of discretization space (p-adaptation), the MFD method 
provides a basis for selecting an optimal discretization 
method.

The novel MFD method has been developed for elements 
with straight edges. Applying ideas from [2], it will be 
possible to extend it to meshes with curved edges. The ideas 
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described in the last two paragraphs will be the topics of 
future research.

A similar MFD method has been developed independently by 
Lourenco Beirão da Veiga and Marco Manzini [1].

For further information contact Konstantin Lipnikov at 
lipnikov@lanl.gov.
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Fig. 2. Example of an 
adapted mesh in Stokes flow 
with a singular point force 
in the middle of the domain. 
The mesh consists of regular 
quadrilateral elements and 
degenerate elements with 
five, six, and eight edges. The 
MFD method uses the same 
construction for all these 
elements.

Fig. 1. Streamlines for the 
flow generated by three 
self-propelled bacteria 
(colored ellipses) moving 
counterclockwise in a closed 
box with no-slip conditions 
on the walls. Fluid sticks 
to bacteria on blue parts 
of the ellipses, whereas on 
red parts fluid is pushed 
back to generate propulsion. 
Calculations were performed 
with the MFD method on a 
polygonal mesh obtained by 
intersection of a square  
50 x 50 mesh with ellipses.


